2564

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 52, NO. 10, OCTOBER 2004

Shorted Fractal Sierpinski Monopole Antenna

C. T. P. Song, Member, IEEE, Peter S. Hall, Fellow, IEEE, and H. Ghafouri-Shiraz, Senior Member, IEEE

Abstract—This paper describes novel configurations of shorted
fractal Sierpinski gasket antenna. The antenna uses half the struc-
ture of a conventional Sierpinski gasket antenna and is folded over
to be parallel to the ground plane, to form an element similar to
that of the inverted L antenna. A quasi log periodic resonance be-
havior is obtained with a shorting pin placed at the far end of the
antenna. Several configurations are shown and a design using two
shorting pins which improves the bandwidth at the fundamental
band is also demonstrated.

Index Terms—Fractal shaped antenna, inverted L antenna,
multiband antenna.

I. INTRODUCTION

N recent years, the use of fractal geometries for antenna

design has been extensively reported [1]-[15]. Fractal ge-
ometries, which are characterized by a series of built-in self-sim-
ilarities, in which an object, the motif, is being repeated on
an ever-diminishing scale, gives the potential for realizing
multiband or even broadband antenna behavior. Some of these
properties are also applied in designing space filing small
antenna [8]. One fractal structure that has aroused particular
interest is the Sierpinski gasket which, was first reported by
Puente et al. [4]. The Sierpinski gasket consists of a series of
scaled triangles forming a linear fractal structure, as shown in
Fig. 1(a). In the progression of its fractal iteration, the repetitive
structural properties translate to a log-periodic allocation of
frequency bands as given by (1), where ( is the scale factor
ratio. The Parany monopole antenna as shown in Fig. 1(b),
also provides similar electrical properties as the Sierpinski
gasket monopole antenna. This antenna was also first reported
by Puente [5]. Since these developments, there has been a
growing interest in various forms of fractal Sierpinski gasket
antennas
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It is recognized that perturbation of this geometry is nec-
essary to enhance the performance of these antenna [9]-[14].
One of the major issues is the truncation of these monopole
antennas. This results in reflected current, causing the funda-
mental band to deviate from its log-periodic behavior. Recent
researches has also led to planar low-profile fractal Sierpinski
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Fig. 1. (a) Fractal Sierpinski gasket monopole and (b) the Parany monopole
antenna.

patch antennas. However, reflections of currents in the different
operating bands cause phase cancellation, causing pattern varia-
tions in each band. This is especially true in the second operating
band where a null is observed. To correct this defect, shorting
pins have been included [15].

The evolution of wire monopole antennas to inverted L and
planar inverted F antennas has been a significant importance
of the progress in antenna technology. Many different forms of
reduce-sized antennas and low profile antennas are all results of
this evolution [16], [17]. One of the recent advances combining
fractal Sierpinski antenna and the inverted L configuration was
first reported in [18]. A shorting pin was used to reduce the size
of the Sierpinski monopole, and to remove truncated current. In
this paper, we will first present in Section II detailed results of
the antenna configuration reported in [18], [19]. We will then
describe in Section III two planar antenna configurations using
the same concept and also verifying band allocation capability
with the Parany monopole antenna. Finally in Section IV, we
will propose a new design using dual shorting pins to enhance
the bandwidth of the antenna at the lower operating band. This
concept will enable design of multiband antenna which covers
operation of most cellular bands and also configuring for the
802.11a bands.

II. VERTICAL SHORTED SIERPINSKI GASKET ANTENNA
A. Antenna Design

The design of the shorted Sierpinski gasket antenna is sim-
ilar to that of the inverted L antenna [16], and the shorted loop
monopole [20]. The prototype Sierpinski gasket is constructed
through a four iteration process. This results to four operating
bands from the four-scaled version of the final gasket structure.
The four small triangles in the top row resulted from the fourth
iteration were however not removed. Using only half of the Sier-
pinski gasket as shown in Fig. 2, it is then possible to fold the
antenna in a similar way to the inverted L antenna, where the
symmetry plane is now parallel with the ground plane.

0018-926X/04$20.00 © 2004 IEEE
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An approximated equation to estimate the resonance fre-
quency of the fractal Sierpinski gasket has been given in [5],
[7]. In this case, due to the contribution of the feed monopole,
an additional term h,, is included. Note that ¢ is the speed
of light, » is an integer number and ( is the scale factor ratio
as described in (1). The resonance frequency of the bands
can be estimated using (2) as shown below. Comparison with
experimental results will be introduced in the next section
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z =0, for n=0
where r=1, for n>1
Y =2(n-1).

The antenna prototype shown in Fig. 2 has a height h of
40 mm, and ¢ of 0.5. It is printed on FR4 substrate with a thick-
ness of 0.5 mm. The ground plane size is 15 x 15 cm and the
height of the feed h,,, is 0.5 mm.

B. Results and Discussion

The return loss (S11) of the antennas was measured with an
HP8720C network analyzer. When fed vertically, the halved
Sierpinski gasket still maintains log periodic VSWR resonance
behavior. However, radiation pattern shows unbalanced main
lobes. This is attributed to the unbalanced nature of the antenna
structure, causing pattern degradation in comparison to the
conventional Sierpinski gasket monopole antenna [4], [5], [7].
The measured input impedance curve varies more sharply when
compared to the unperturbed structure, due to a higher Q, as the
antenna now has less area for radiation. In the folded, “inverted
L” configuration where the symmetry plane is 0.5 mm above
the ground plane, the antenna impedance increases resulting
to poor matching characteristic. It is found that the matching
improves when the feed monopole height (h,,) is increased
to 5 mm, except for the first resonance band. At the upper
frequency band, contribution from the feed monopole becomes
more significant. These input return loss performances are
shown in Fig. 3(a)—(c). The measured resonances are at 1.77,
3.43, 6.73, and 12.2 GHz, giving a frequency ratio of 0.51,
0.51, and 0.55. The slight increase in the third ratio is due to the
height of the feed. Using (2), the estimated frequencies for the
antenna shown in Fig. 2 are at 1.67, 3.65, 7.17 and 12.93 GHz,
giving an error in comparison to experimental results of 5.65,
6.41, 6.53, and 5.98%, respectively.

The poor matching characteristics of the first band and the
deviation from log periodic behavior of the Sierpinski gasket
antenna can be attributed to the truncation effect. Since currents
of the first band are not sufficiently attenuated by radiation, a re-
flection from the edge of the antenna occurs, forming a standing
wave which perturbs the log periodic performance. To remove
this edge current, a shorting pin is placed at the far end of the
antenna, as shown in Fig. 2. The result is an antenna that is very
similar in operation to a shorted loop monopole [20]. From the
input return loss observation, it is clear that the matching char-
acteristic of the first band has improved. This is shown as dash
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Fig. 2. Folded shorted “inverted L” Sierpinski gasket.
Frequency (GHz)
Fig. 3. Measured Sq; comparison (a) vertically fed Sierpinski gasket shown

in Fig. 1(a), (b) vertically fed halved Sierpinski gasket, (c) folded “inverted
L” Sierpinski gasket shown in Fig. 2 with h,, = 5 mm and shorting pin,
(d) shorted folded “inverted L Sierpinski gasket shown in Fig. 2 with h,, =
5 min.
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Fig. 4. Simulated field distribution of the four operating bands.

lines in Fig. 3(d). The resonance frequency has also shifted up
from 1.05 to 1.77 GHz and the frequency ratio between the first
and second band was brought near to about 0.5. Although this
seems to indicate log periodic action of the Sierpinski gasket, it
is however due to the shorted loop mode. From the input return
loss plot, it can also be deduced that the resonance frequency
of the third and fourth band are not affected by the shorting pin.
These bands can thus be considered due to the Sierpinski gasket.

A full wave electromagnetic simulation software (HP-HFSS)
was use to predict the performance of the antenna rather ade-
quately. The simulated field distribution is shown in Fig. 4. For
the first band, high E-field strength can be seen on the entire an-
tenna structure and the H-field shows high current density that
congregates around the shorting pin. This indicates that at the
first resonance, current flows in the closed loop, from the feed to
the ground via the shorting pin. In comparison to higher bands,
the H-field intensity of the shorting pins are much less, hence its
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contribution at that frequency is minimal. As the operating fre-
quency increases, the size of the antenna’s “hot” zone also re-
duces. This further verifies that these resonances are attributed
to the fractal Sierpinski gasket modes.

The measured and simulated radiation patterns of the four
bands are shown in Fig. 5. A good agreement between the
theoretical and experimental results is achieved. The first band
demonstrates a monopolar-liked pattern, while the expected
nulls along the Z axis of the second and third band were
not present along the Z — Y plane. The X — Y plane also
demonstrates asymmetrical omni-directional patterns. This is
attributed to the asymmetrical nature of the antenna structure,
and field contribution from horizontal and vertical planes in
each band. At the fourth band, the Z — X and Z — Y planes
show better monopolar patterns. The generated patterns of the
first two resonances are clearly shorted loop modes [20], how-
ever with higher cross-polar power for the second resonance in
the Z — X plane. Although the third and fourth bands are the
Sierpinski modes, a slight null is observed for the fourth band
and this is due to the greater contribution of the feed monopole.

III. PLANAR SHORTED ANTENNA CONFIGURATION

A. Planar Shorted Sierpinski Gasket Antenna

Using the design concepts demonstrated above, the shorted
antenna may also be designed in a planar configuration as shown
in Fig. 6. The gasket height, h, is maintained at 40 mm and
the antenna is printed on similar FR4 substrate. In this case,
the antenna height h,,, is raised to 14 mm, so as to improve
the matching by reducing the interaction of the ground plane
with the antenna. The measured input return loss comparison
with simulation, and (d) of Fig. 3, are shown in Fig. 7. Reso-
nances were obtained at 1.52, 3.23, 5.49, and 9 GHz, giving fre-
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Measured (black lines) and simulated (red lines) radiation plots of the vertically mounted folded shorted Sierpinski gasket antenna shown in Fig. 2
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Fig. 6. (a) Configuration of the planar shorted Sierpinski gasket antenna and
(b) configuration of the planar shorted Parany antenna.
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Fig. 7. 511 characteristics of the planar shorted Sierpinski gasket antenna:
(a) measured, (b) simulated, and (c) vertical type configuration.

quency ratios of 0.47,0.58, and 0.6 1, respectively. A lower reso-
nance frequency is observed compared to the vertically mounted
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Fig. 9. Measured and simulated S, characteristics of shorted Parany antenna
shown in Fig. 6(b) (a) measured planar Parany, (b) simulated planar Parany, and
(c) measured vertical Parany.

configuration of Fig. 2. This is due to the contribution from
the longer feed, hence resulting in a longer current path. The
full wave simulation was able to predict quite accurately the
generated resonance. The simulated E and H field distribution
also shows resonance due to the discontinuity of the Sierpinski
gasket, similar to that in Fig. 4. Due to the change from vertical
to planar configuration, radiation patterns are also expected to
vary as shown in Fig. 8.

B. Planar Shorted Band Allocated Parany Antenna

It is well understood that the allocation of operating bands
can be achieved by changing the scale factor ratio of the Sier-
pinski gasket and Parany monopole antenna [5], [9], [13], [14].
This technique can also be applied to the shorted antenna con-
figuration. The perturbed fourth iterated Parany monopole an-
tenna shown in Fig. 6(b) with h = 40 mm and h,,, = 16 mm
is printed on a similar FR4 material in the previous section. The

Measured radiation pattern of the planar shorted Sierpinski gasket antenna shown in Fig. 6(a) (
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Fig. 11. Improved performance using two shorting pins.

scale factor ratio, ¢ of 0.8 was used. The simulated and mea-
sured results of the planar fed shorted Parany monopole antenna
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Fig. 12. Measured radiation pattern for the antenna shown in Fig. 10.

are shown in Fig. 9(a) and (b) respectively The results of a verti-
cally fed configuration is also shown in Fig. 9(c) for comparison.
From the input return loss results, it is clear that the vertical type
configurations provide a better impedance match than the planar
type. The resonances were obtained at approximately 1.39, 2.82,
3.90, and 5.04 GHz, where frequency ratios between the bands
are 0.49, 0.72, and 0.77. Despite the prescribed frequency ratio
of 0.8, the first two resonances are similar to that of the shorted
Sierpinski gasket shown in Fig. 2. This again implies a shorted
loop mode. Frequency allocation can also be observed on the
upper resonances where their ratios are around 0.75. Neverthe-
less, these resonances are very much perturbed by the presence
of the feed monopole.

IV. BANDWIDTH IMPROVED PERFORMANCE

As noted above, the truncated currents of the monopole
configuration has caused deviation of the fundamental band
performance from its expected log periodic behavior. Another
design proposed which attempts to attenuate the residual current
sufficiently was to include an additional frame [12], hence
maintaining the log-periodic behavior of the antenna. To apply
this to the antenna above, two shorting pins are placed at the
edge of the antenna. This generates an additional mode, formed
by the external frame and shorting pin. Fig. 10 shows the
initial mode represented by the dash line (- - -) while the
additional current mode is shown as hard line (——). The
antenna of Fig. 10 has a height h of 40 mm, and { of 0.8.

It is printed on FR4 substrate with a thickness of 0.5 mm.
The ground plane size is 15 x 15 cm and the height A, of
the feed is 5 mm.

Fig. 11 shows the input return loss of the dual shorting pin
antenna in comparison to the vertical and planar type shorted
Parany antenna described in the previous sections. It can be seen
that the first and second bands are merged together (see marker
A of Fig. 11), which produce significant impedance bandwidth
improvement. Using S7; at —6 dB reference point, the antenna
is matched from about 1.52 GHz to 2.85 GHz, giving about 30%
bandwidth. By varying the spacing between the frame and the
edge of the Parany antenna, the two current paths can be tuned to
provide this broadband effect. Comparing the S71; performance
with other antennas result shown in Fig. 11, the second band of
all antennas (see marker B) remained similar at about 2.6 GHz,
indicating that it is independent of the additional shorting pin.
The measured radiation pattern of the first (1.736 GHz) and
second resonance (2.684 GHz) are shown in Fig. 12. The next
band of interest at 5.3 GHz was also measured. Comparing these
results with those obtained in Fig. 5 for the antenna shown in
Fig. 2, a good degree of consistency can be concluded for these
antennas operating with the shorted vertical configuration.

V. CONCLUSION

In this paper, we have described the design of a novel multi-
band antenna using a halved fractal Sierpinski gasket geometry
and a shorting pin. As with the unperturbed Sierpinski gasket,
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the halved structure is also sensitive to scaling ratio, which en-
ables frequency allocation and tuning. This has been success-
fully implemented on a halved size Parany antenna with a scale
factor ratio of 0.7. The design can also be realized with a planar
configuration with good matching, provided that the antenna is
sufficiently far from the ground plane. The addition of a shorting
pin with a frame has also been described which gives improved
bandwidth at the lower band, and covers the DCS, PHS, PCS,
DECT, UMTS, Bluetooth, 802.11b, and 802.11a bands.
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